Lesson Title:	The Cell as a System		
Subject:	Freshmen / Sophomore Biology (Fifth Bell)		
Teacher:	Ms. Diana M. VonEye		
Date:	2 February 2005		
□ Monday □ Tuesday □ Wednesday □ Thursday □ Friday			
Grade:	9 th and 10 th		
Class Background:	14-17 years of age; 17 females, 11 males; 20 Caucasians, 8 African		
	Americans; 3 IEPs.		
Time:	3 fifty minute class periods		

Rationale:

The animal cell can be seen as a comparison to many systems that exist in our world today. Through the process of scientific literacy and scientific inquiry, students will design the animal as a city system, and support their reasoning. Scientific inquiry assist the student to know that scientists' explanations about what happens in the world come partly from what they observe, partly from what they think. It is also designed to encourage student skills in using technology. It is important that students see that all parts of the animal cell are interlinked to one another, and depend on the functions of each piece- just like cities are interdependent and linked.

Standards Met:

NSES Standard C: All students should develop understanding of the cell.

ODE Grade 9: Doing Scientific Inquiry: 3. Construct, interpret and apply physical and conceptual models that represent or explain systems, objects, events or concepts.

ODE Grade 9: Scientific Inquiry: A. Participate in and apply the processes of scientific investigation to create models and to design, conduct, evaluate and communicate the results of these investigations.

ODE Grade 9: Doing Scientific Inquiry: 5. Develop oral and written presentations using clear language, accurate data, appropriate graphs, tables, maps and available technology.

ODE Grade 10: Characteristics and Structure of Life: 1. Explain that living cells

A. are composed of a small number of key chemical elements (carbon, hydrogen, oxygen, nitrogen, phosphorus and sulfur)

B. are the basic unit of structure and function of all living things

C. come from pre-existing cells after life originated, and

D. are different from a viruses.

ODE Grade 10: Characteristics and Structure of Life: 2. Compare the structure, function and interrelatedness of cell organelles in eukaryotic cells (e.g., nucleus, chromosome, mitochondria, cell membrane, cell wall, chloroplast, cilia, flagella) and prokaryotic cells.

ODE Grade 10: Doing Scientific Inquiry: 2. Present scientific findings using clear language, accurate data, appropriate graphs, tables, maps and available technology.

ODE Grade 10: Doing Scientific Inquiry: 4. Draw conclusions from inquiries based on scientific knowledge and principles, the use of logic and evidence (data) from investigations.

ODE Grade 11: Doing Scientific Inquiry: 3. Design and carry out scientific inquiry (investigation), communicate and critique results through peer review.

ODE Grade 11: Doing Scientific Inquiry: 5. Summarize data and construct a reasonable argument based on those data and other known information.

ODE Grade 11: Scientific Theories: 7. Explain how theories are judged by how well they fit with other theories, the range of included observations, how well they explain observations and how effective they are in predicting new findings.

Objectives:

- 1. The students will be able to identify the structures found (nucleus, plasma membrane, cytoskeleton, and nucleolus, etc.) within a cell.
- Students will be able to identify the functions of the organelles (mitochondria, centrioles, endoplasmic reticulum, Golgi apparatus, vacuole, ribosomes, lysosomes, etc.) within the cell and its structure.
- 3. Students will see and understand how these organelles work as a system.
- 4. Students will create a working written and visual understanding of the structure and functions of the organelles in an animal cell.
- Students will be able to communicate and share findings of student investigation by first making conclusions based on what they see using their previous knowledge and acquired knowledge.
- 6. The students will be able to develop more concrete conclusions and reevaluate why they stated their previous conclusion.
- 7. By utilizing technological resources and language skills the students will know about the animal cell's structure and its internal functions.

Activities:

1. Read the chapter 5 about cell structure and function in the BSCS textbook.

- Students will be given data sheets to be filled out on computer in groups of 3.
 Visit the Resource Center computers downstairs to use <u>www.virtualcell.com</u> to complete worksheet. Take tour of cell to fill out worksheets as a group.
- 3. Identify the function(s) of the structures and organelles of the cell.
- 4. The students will be engaged into a discussion on the topic of seeing a cell as a system. Allow students to name systems in a city and make a comparison to the cell during open class discussion.

Questions to ask students:

- 1. What do you need to make a city function?
- 2. Who takes out the trash?
- 3. Where does energy come from for streetlights?
- List analogies of cell organelles to scenario of a city system on the board for students to refer to.
- 6. Write an individual short essay comparing and contrasting the animal cell to the given system using proper grammar, format, style, and presentation. Included in this is a defense on the system choice, and defending all choices about selection of structure and function for each "piece" of the system in its relation to the animal cell.
- 7. In small cooperative groups of three, construct a model of an animal cell with various materials.
- Completed projects and models will be presented to the class on the third and final day.

Materials:

- Virtual cell worksheets, Computers, Color pencils, Markers, Construction paper, Macaroni, Candy, Paint, Spaghetti, Packing peanuts, Pipe cleaners, Toothpicks...
- Anything else that is destructible students can use safely to make their cells.

Handouts:

- 1. Virtual Cell Worksheets located in the appendix.
- 2. Various rubrics for students to know how they will be graded.
- 3. For students with special needs (IEPs) or learning disabilities provide a word guide may be provided for the fill-in-the-blank assignment.

Homework:

- 1. Complete virtual cell worksheets, if not completed in class.
- 2. A description of the structures and functions for specified animal structure and organelles in individual short answer format.
- 3. Presentation and completed diagram of animal cell.
- 4. A completed defensive essay on the choices made for each individual cell part and why the part of the city system is appropriately chosen.

Technology Equipment:

- 1. Computers
- 2. The Internet

Management:

- 1. This lesson can be completed over the course of 3 fifty minute class sessions.
- 2. Worksheets are passed out on first day to allow for students to work on computers in Resource Room at school, (most questions are able to be answered with the textbook too) if they don't have a computer at home.
- 3. Work is done individually and in cooperative groups.
- 4. Materials for animal cell model are created and gathered before class for groups containing 3 students each.
- 5. Grading standards and rubrics are given to students to understand expectations.
- 6. Completed worksheets and animal cell diagrams are turned in at the end of each class session.

Resources:

www.virtualcell.com

Assessment:

Class discussion(s)	\Box Test(s)	U Written journal
□ Presentation(s)	Quiz	Project
Graded homework	□ Oral evaluation	Group project
Additional experiment(s)	Group discussion	Design own experiment
Lab Report	□ Other:	

APPENDIX:

HANDOUTS AND EVALUATION TOOLS*

* Retyped from the files of worksheets, quizzes and tests of Mrs. Shell.

NAME:	DATE:	BELL:
-------	-------	-------

LIST ANALOGIES OF CELL ORGANELLS TO SYSTEMS IN A CITY

Directions:

Using the information that was collected during your brainstorming session "What is Needed to Make a City Function", make a comparison to the functions of the organelles that you have discovered are part of the animal cell. You should have a list of systems needed to make a city function in your class notes. The following list of organelles should be included. You may also include others.

CITY SYSTEM

Endoplasmic Reticulum	
-	
Golgi Apparatus	
Vacuole	
Ribosome	
Lysosome	
L	

NAME	DATE	Bell

GROUP WORK: VIRTUAL CELL TOUR: CELL BIOLOGY

- To get to the site, go to <u>www.virtualcell.com</u>. Click on the Virtual Textbook. Under Biology, click on Chapter 3: Cell Biology. Click on Next Page to begin the tour. Complete all sections needed to fill out this worksheet.
- The cell (plasma) membrane is found in both ______ and _____ cells.
 Plant cells have both a ______ and a ______

_____. The cell membrane lets things in and out of the cell and is made up of

two things:

a. 1) _____ and 2) _____

3. In the sample representation of a Phospholipid, the yellow structures represents the _______ or water loving section while the blue represents the _______ or water fearing end of the Phospholipid. The water loving portion is composed of _______ and ______. The water fearing portion is composed of _______ and ______. The hydrophilic head is polarized while the tails are non-polar. The polar (this means it has opposite ends, like a magnet) "head" attracts _______, while the non-polar "tail" repels ______. This attraction / repulsion is what forms the two layers of the cell membrane. The Phospholipid ______ are on the outside, where the water is, and the two non-polar tails are pointed towards each other, where the water isn't. This creates a fluid double layered membrane.

- 4. There are ______ in the cell that allow some materials to pass through.
 These are generally globular ______. They fall into three function categories 1) ______ regulate transport and diffusion; 2) ______ identify the cell to other cells; and 3) _______ allow the cell to receive instructions.
- Steroids are sometimes a ______ of cell membranes in the form of ______. When it is present it reduces the fluidity of the membrane.
- 6. **Transport proteins** come in two forms: _____ and _____.

______ proteins are peripheral proteins which do not extend all the way through the membrane. The move specific molecules through the membrane one at a time. ______ proteins extend through the bilipid layer. They form a pore through the membrane that can move molecules in several ways. Draw and label an illustration of these two proteins in the cell membrane.

Here:

- 7. Carrier proteins do not extend through the membrane. They _____ and _____ molecules through the bilipid layer and release them on the opposite
- 8. Channel proteins simply act as a _____ pore. Molecules will randomly move through the opening via a process called diffusion. This process requires no energy, molecules move from an area of high concentration to an area of _____ concentration.

- 9. ______also use the process of diffusion. Molecules that are moving naturally into the cell through diffusion are used to drag another molecule into the cell.
- 10. The **Sodium/Potassium pump** uses energy from ______ to drag molecules from an area of ______ concentration to and area of ______ concentration. This is and example of ______ transport.
- 11. ______ extend across the cell membrane and serve to identify the cell. The ______ system uses these proteins to tell friendly cells from foreign

invaders. They are as unique as ______.

12. _____ proteins are used in intercellular communication.

- 14. The process by which large molecules that are manufactured in the cell are released through the cell membrane is called _____;

15. The **nucleus** contains ______ and the ______.

16. The Nucleolus manufactures ______ is

composed of DNA. There are three processes that enable the cell to manufacture

protein. ______ lets the nucleus make exact copies of its DNA.

_____ lets the cell make RNA working copies of its DNA. In

translation the Messenger RNA is used to line up amino acids in a protein molecule.

17. The **organelles** involved in protein production are 1) _____, 2)

_____, 3) ______, 4) _____.

 18. The rough E.R. has ________ attached to it. These give it its texture. The _______ for the cell.

19. Centrioles are only found in ______ cells. They function in cell ______. They have _____ groups of _____ arrangement of the protein fibers. Draw a picture of a centriole in the box.

_____ body. They consist of a single membrane surrounding powerful

_____ enzymes. Those lumpy brown structures are digestive

_____. They help protect you by ______ the bacteria that

your white blood cells engulf. ______ act as a clean up crew for the cell.

Zoom in and draw what you see.

21. Chloroplasts are the site of ______. They consist of a

membrane. The stacks of disk like structures are called the

_____. The membranes connecting them are the ______

membranes. Zoom in and draw a picture.

22. Mitochondrion is the ______ of the cell. It is the site of

_____. It has a ______ membrane. The inner

membrane is where most ______ respiration occurs. The inner

membranes are ______ with a very large surface area. These ruffles are called

______. Mitochondria have their own ______ and manufacture some of

their own ______. Draw a picture of the mitochondrion with its

membrane cut.

23.	Endoplasmic Reticulum (ER) is a series of double membranes that back		
	and forth between the cell membrane and the These membranes		
	fill the but you cannot see them because they are very		
	The rough E.R. has		
	attached to it. This gives it its texture. These ribosomes manufacture		
	for the cell. The ribosomes are the		
	which manufacture proteins. Draw the rough		
	ER with a ribosome.		
24.	Smooth E.R ribosomes. It acts as a		
	throughout the cytoplasm. It runs from the cell membrane to the nuclear		
	and throughout the rest of the cell. It also produces		
	for the cell. Draw a picture of the smooth ER.		
25.	Cell Membrane performs a number of critical functions for the It		
	regulates all that and leaves the cell; in multicellular organisms it		
	allows recognition. Draw and shade the cell membrane.		
26.	Nucleus is called the of the cell. It is a large		
	spot in eukaryotic cells. It all cell activity. The nuclear		
	membrane has many The thick ropy strands are the		
	The large solid spot is the		
	The nucleolus is a spot of		
	chromatin. It manufactures The chromatin is		
	in its active form. It is a		
	of DNA and histone proteins. It stores th		

information needed for the manufacture of ______. Draw a picture of the nucleus and its nucleolus.

27. Golgi body is responsible for packaging ______ for the cell.

Once the proteins are produced by the ______ E.R., they pass into the

______ like cisternae that are the main part of the Golgi body. These proteins are then squeezed off into the little ______ which drift off into the cytoplasm. Draw a picture of the Golgi body as it is squeezing off the proteins.

28. ______ is the site of photosynthesis. It consists of a double membrane. Inside this organelle are stacks of disk like structures called ______.
The membranes connecting them are the ______ membranes.

Name: Date:				
Project Title:	Teacher(s):			
GROUP PRESENTATION CELL MODEL				
Process	Below Avg.	Satisfactory	Excellent	
1. Has clear vision of final product	1, 2, 3	4, 5, 6	7, 8, 9	
2. Properly organized to complete project	1, 2, 3	4, 5, 6	7, 8, 9	
3. Managed time wisely	1, 2, 3	4, 5, 6	7, 8, 9	
4. Acquired needed knowledge base	1, 2, 3	4, 5, 6	7, 8, 9	
5. Communicated efforts with teacher	1, 2, 3	4, 5, 6	7, 8, 9	
Product (Project)	Below Avg.	Satisfactory	Excellent	
1. Format	1, 2, 3	4, 5, 6	7, 8, 9	
2. Mechanics of speaking	1, 2, 3	4, 5, 6	7, 8, 9	
3. Organization and structure	1, 2, 3	4, 5, 6	7, 8, 9	
4. Creativity	1, 2, 3	4, 5, 6	7, 8, 9	
5. Demonstrates knowledge	1, 2, 3	4, 5, 6	7, 8, 9, 10	
6. Other:	1, 2, 3	4, 5, 6	7, 8, 9	

Total Score:_____/100

Teacher(s) Comments: